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REPORT ON THE WORKSHOP ON
OPTICAL NEURAL NETWORKS

Final Report for AFOSR 89-NE-355, Dr. Alan Craig
and for ONR N00014-90-J-1990, Dr. Wm. Miceli

Prepared by

Kelvin Wagner

Optoelectronic Computing Systems Center
University of Colorado, Boulder

Boulder, Co 80309-0425

September 28,1990

Thirty-nine researchers attended the Workshop on Optical Neural Networks held in Jack-
son, Wyoming this past February 7-10, 1990. The Workshop, sponsored by the Air Force
Office of Scientific Research and the Office of Naval Research, was organized by Lee Giles
(NEC Research Institute), Demetri Psaltis (California Institute of Technology), and Kelvin
Wagner (Optoelectronic Computing Systems Center, University of Colorado at Boulder). Its
purpose was to critically examine the status of optical neural network research and evaluate
its present and future role, particularly as an implementation technology for neural network
models of computation.

The workshop participants included researchers in optical neural networks as well as ex-
perts in related fields such as active optical devices, VLSI implementation of neural networks,
and neural network architectures, algorithms, and theory. The format of the workshop in-
cluded both presentation and discussion sessions. Each participant had prepared a 15 minute
presentation. These presentations served as the context for the discussion sessions. A brief
summary of some of these presentations and discussions is presented below.

1 Introduction

Neural networks typically consist of weighted global interconnections between arrays of sim-
ple nonlinear units. Their output is usually a soft threshold version of the weighted and
summed inputs from other neurons. Learning dynamics are used to evolve the interconnec-
tion weight matrices as a succession of small perturbations, usually implemented as sums of
outer products. These are the essential features that must be incorporated into any hardware
implementation of a neural network.

Optical techniques are being considered for the implementation of neural network mod-
els of computation because of several unique properties of optical systems. These include
the three-dimensional topology of optical systems, and the ability of optical beams to cross
through one another in free space, allowing the compact implementation of global intercon-
nect networks. In addition, the continuous analog nature of optical systems can be combined
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with nonlinear optical devices to implement nonlinear dynamical systems which are a good
match to neurodynamical models of computation and learning.

Optical approaches to the implementation of neural networks are usually based on one
of two distinct techniques for implementing the weighted interconnections required by the
neural models. The first approach, shown in Figure 1, uses the variable transmittance of
a pixel in a two- dimensional spatial light modulator (SLM) to represent the weight of an
interconnection. The second approach, shown in Figure 2 uses the programmable diffraction
efficiency of a holographic grating to represent the weight of an interconnection. Both tech-
niques rely on spatial broadcasting and spatial collection of the weighted outputs to complete
the required matrix vector multiplication. A potential advantage of the holographic tech-
n~que that was emphasized by several conference participants is the ability to utilize volume
holograms to store the interconnection gratings in three dimensions, as shown in Figure 2.
This allows a tremendous density of weighted interconnections to be realized, and the use of
dynamic materials (such as photorefractive crystals) allows the implementation of real-time
learning in the optical domain. This is based on an extension of the holographic metaphor for
associative memory proposed by Van Heerden and Gabor more than 20 years ago. Three key
developments that distinguish modern optical neural network research from earlier pioneer-
ing work on holographic association are the incorporation of dynamic learning algorithms,
the central role played by the neural nonlinearity, and the utilization of fractal topologies in
order to fully realize the global interconnection capabilities of volume holograms.

2 Learning Systems

The most distinctive feature of neural network models of computation is the ability to learn
from experience. This is accomplished by adaptively modifying the strength of the inter-
connections between the neurons. In optical systems, these weights are usually represented
as the diffraction efficiency of holographic gratings or as the transmittance of pixels in a
spatial light modulator. Neural learning algorithms give rules for the adaptive modifica-
tion of these interconnections or weights, which are almost always based on iterative outer
product perturbations of the weight matrix. This can be mapped into optics as either asso-
ciative holographic recording or as the product of crossed one-dimensional light modulators
addressing a two-dimensional optically addressed spatial light modulators.

2.1 Photorefractive perceptrons

Several successful optical learning demonstrations using photorefractive crystals were pre-
sented at this Workshop. David Brady (University of Illinois, Urbana-Champagne) discussed
the limitations of controlling dynamic volume holograms, since the N 3 internal degrees of
freedom must be accessed through the faces, which permit the addressing of only N2 inde-
pendent control parameters. In neural learning applications, outer products are formed with
holographic interference between patterns sampled on appropriate fractal grids that modify
all N 3 internal degrees of freedom, but not independently. A sequence of exposures must
be used to write interconnection matrices into a volume hologram, and exposure scheduling
needs to be employed to maximize the diffraction efficiency, which is decreased due to the
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effect that subsequent exposures partially erase earlier ones. He also showed the results of
a photorefractive perceptron which associated 500 input random patterns with 500 pixel
names, shown in Figure 3, where the weight decrements required by the learning algorithm
were implemented using incoherent erasure.

John Hong (Rockwell Science Center, Thousand Oaks, CA) demonstrated the successful
operation of a photoreceptive perceptron. His system, shown in Figure 4, uses coherent
erasure to decrease the adaptive weights, where a 7r phase shifted grating is written on top of
an existing grating using a double mach-zehnder interferometer, thereby partially canceling
the initial grating.

Eung Gi Paek (Bellcore, New Jersey) also presented a perceptron learning system that
uses a photorefractive crystal as the adaptive weights. The system, shown schematically in
Figure 5, had 250,000 input neurons and 10 bipolar outputs. His research demonstrated that
a multiple output perceptron could be implemented by multiplexing gratings in a volume
medium without unwanted crosstalk. Both Paek's and Hong's systems exhibited anomalous
unlearning due to incoherent erasure in the crystals after the desired pattern associations had
been learned and were simply being read out. This may be a severe problem for the optical
implementation of adaptive systems using photorefractive holograms unless a compensating
learning algorithm, or nondestructive readout technique is utilized.

2.2 SLM based learning systems

Successful learning was also obtained in systems employing SLMs as the adaptive intercon-
nections. Kristina Johnson (OCS Center, CU-Boulder) presented results of single-layer and
multi-layer learning experiments in a polarization based liquid crystal optical connectionist
machine. (See Figure 6.) This optical connectionist machine has performed back propaga-
tion learning that successfully predict solar flare activity given 32 coded input and 3 labeled
output neurons when trained on 200 patterns of sunspot data. The learning dynamics, which
were controlled by the feedback computer, successfully compensated for several varieties of
noise due to imperfections in the optics.

Nabil Farhat (University of Pennsylvania) presented work on Boltzmann machine learn-
ing using binary spatial light modulators. He showed how a multilayered network can be
implemented in a single layer of hardware by partitioning the weight matrix into a number of
blocks representing the interconnections between different layers as shown in Figure 7. Dr.
Farhat and Dr. Anderson also discussed phase space engineering techniques which describes
their approach to designing an optical neural network. This entails the design of the path of
a complex system through its state space and represents a computation as the state space
evolution of the system.

3 Optical Synapse Technology

The successful realization of optical neural networks is dependent upon the availability of
components that can act as neurons and synapses. The optical synapses must weight the
interconnections between the neurons. The ability to be dynamically modify these synapses
is required in order to implement adaptive learning algorithms.
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3.1 Dynamic volume holograms

Holographic interconnections using dynamic volume holograms were discussed by several
participants. A major difficulty with these materials is the incoherent erasure that occurs
while the holograms are being read out, which results in the unlearning phenomena observed
by Paek and Hong. This incoherent erasure problem in photorefractives can be alleviated
by inducing a read-write asymmetry.

Henri Rajenbach (Thomson-CSF, France) presented preliminary results of hole fixing in
cooled BSO that resulted in the ability to continuously read out images for several hours
without erasure. This is possible because a photogenerated hologram written by the electrons
is compensated by the holes, and at low temperatures the hole mobility is much lower than
the electron mobility, so that a hologram written as spatial modulations of the hole density
remains frozen into the crystal.

Fai Mok (Northrup Corp. Research and Technology Center, Palos Verdes, CA) pre-
sented results of multiple image storage in LiNbO3:Fe that used thermal fixing and exposure
scheduling to compensate for erasure during writing, and also eliminates erasure during read-
out. He has successfully stored and retrieved over 500 high quality images of over 60,000
pixels each, with greater than .01% diffraction efficiency each. The holograms were recorded
with a 300:1 beam ratio at an angular separation of .02 degrees, and exposure scheduling
was used in order to obtain a diffraction efficiency uniformity of about 25%.

Kelvin Wagner (University of Colorado, Boulder CO) showed samples of organic volume
holograms based on photochemical dyes suspended in a polymer matrix that may find ap-
plications in optical neural networks. These materials exhibit high diffraction efficiency and
show both permanent and dynamic holographic recording capabilities that may be useful for
avoiding unlearning associated with erasure. The very low cost and large size may give them
a competitive economic advantage over the more costly and fragile photorefractive crystals
commonly employed.

Dana Anderson (OCS Center, CU-Boulder) showed winner-take-all behavior in sequential
recall dynamics in a multi-crystal photorefractive resonator, shown in Figure 8. These type
of winner-take-all dynamics give the optical system an important decision making capability
that forms the basis of a wide variety of unsupervised learning algorithms. Dr. Anderson
believes that the computation dynamics inherent to the photorefractive circuits may be
applied as a very general technique for obtaining almost any dynamics provided one has a
sufficient number of modes and sufficient control over the mode interactions. Furthermore,
this class of optical system is one of the few physical systems that can embed continuous
distributions of neural activity processing in continuous time.

3.2 Fixed planar holograms

Art Gmitro (University of Arizona) and Henry 1. White (British Aerospace) both presented
analysis of the limitations of space variant weighted interconnections using E-Beam written
computer-generated holograms for interconnecting two-dimensional neuron arrays displayed
on liquid crystal light valves. They both concluded that up to about 64x64 neuron arrays
could be glbbally interconnected in order to implement a nonadaptive optical neural network
using this technique. However, larger networks would be beyond the technological capabil-
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ities of this technology. This is because the size and resolution requirements of a space
variant interconnection hologram for an NxN neuron array grow as KN 2 xKN 2 , where K" is
an oversampling factor, typically greater than 10, and the overall space-bandwidth product
is constrained to be less than 10Sx10 5 by the e-beam machines. In addition, due to various
crosstalk and sidelobe terms, the accuracy of these weighted interconnects might be too
low for some applications (such as neural optimizers) but it may be sufficient for'optical
associative memory.

Alan Yamamura (California Institute of Technology) presented new results of writing
computer generated holograms on Sony's sampled-format optical disks. Holographically
reconstructed weight matrices were written onto optically programmed VLSI neural chips
to control the electronic interconnect topology from the optical domain. This allows rapid
reprogrammability of the interconnections in order to implement multilayer networks.

4 Optical Neuron Technology

Simple optical neurons need to sum a huge number of weighted inputs and produce a thresh-
old output. The goals, stated in an introduction by Demetri Psaltis (California Institute
of Technology, Pasadena), are to produce devices with more than 10,000 neurons with a
response time in the microsecond range, with gain much greater than 10, and power dissi-
pation well below a milliwatt. Although such a device capability is not yet available, several
technologies appear to be approaching this goal.

4.1 FLC modulators

Ferroelectric liquid crystals are a promising candidate for implementing large arrays of low
power neurons. Garret Moddel (OCS Center, CU-Boulder) illustrated the capabilities of an
amorphous silicon ferroelectric liquid crystal (FLC) optically-addressed spatial light modu-
lator (OASLM) using smectic C* and smectic A* materials. The smectic A* device achieves
as low as a 4 microsecond response time for a high resolution SLM (i.701p/mm) with signifi-
cantly more than 1000x1000 pixels, requiring significantly below .lpJ/pixel switching energy.
These capabilities make this an almost ideal device for implementing optical neurons. Even
further improvements can be made by including a third terminal, which his group recently
demonstrated, allowing them to implement a variable threshold device.

Tim Drabik (Georgia Institute of Technology, Atlanta) presented recent results on a
silicon VLSI chip coated with FLC that incorporated a 16x8 array of photodetectors where
each detector drove a modulating pad containing the FLC and acted as an optically-addressed
SLM. This device may have application as an optical neuron array or as an early vision optical
preprocessor. He also showed results of a high frame rate electrically addressed 64x64 SLM
that might be used for entering data into an optical neural network.

4.2 GaAs modulators, LEDS and laser diodes

Another promising approach is to use optoelectronic GaAs modulators and sources such as
LEDs and laser diodes driven by electronic photo-detectors. Several variants were proposed

13



for optical neurons, and their properties were compared and contrasted.
Tony Lentine (AT&T Bell Labs, Naperville, IL) showed results of a 1.5pJ switching energy

symmetric self- electro-optic-effect device (S-SEED). Arrays of those devices can implement
loser-take-all dynamics by electrically interconnecting them in series. Although this is the
opposite of the winner-take-all dynamics required in many neural models, it can be modified
by following with a separate optical inversion stage.

Jasprit Singh (university of Michigan, Ann Arbor) suggested that SEEDs were not suited
to neural networks, but could be modified by placing the seed inside of a heterojunction
bipolar transistor, rather than inside a PIN diode as conventionally done. Not only could
this allow the utilization of the HBT-SEED as a neuron, but it might also be used as an
adaptive synapse mask.

J. Cheng (University of New Mexico, Albuquerque) presented arguments in favor of the
use of micropower laser diodes and vertical cavity surface emitting lasers as the sources for
optical neurons. This is motivated by the excellent optical properties and diffraction limited
performance of these sources, as well as by the high differential quantum efficiency that can
be achieved. He suggested that a photodarlington ving each microlaser could provide the
necessary optical neuron functions.

Demetri Psaltis showed results of a 10x10 array of phototransistor darlington amplifier
LED neuron array fabricated in GaAs. LEDs were chosen instead of more efficient diodes
because they have no current threshold and the power dissipation of a very large array of
optical neurons can be minimized. His arguments go as follows, the total output power of
an array of N laser diodes is given by

ptic., = N 7 (i - ith)hv/q

where 77 ; .3 - .7 is the external differential quantum efficiency and includes the resonator
and loss effects, i is the input current, while ith - lmA is the threshold current for a low
threshold laser. Similarly the total output power of an array of N' LEDs is given by

P LED N'i?'i'hv/q
optical

where 17' .01 is the efficiency for an LED, and i' is the drive current. For both the laser

and LED the dissipation is given by Pdis = iv and the drive voltage for both must be above
the bandgap. For a fixed power requirement as the number of neurons is increased, the total
efficiency of the lasers drop since they are operated closer to threshold, while for the LEDs
the efficiency remains constant. Therefore, for more than about 1000 neurons emitting a
few mW, the LEDs are preferable. However, if Watts of optical power is required, then laser
diodes would have significantly better overall efficiency.

5 Implications of Neural Network Theory

Neural network theory has several implications on the requirements and limitations of optical
neural networks. These issues were discussed at length during the Workshop. Two specific
consequences are mentioned here.

14



5.1 dynamic range requirements on synapses

Santosh Venkatesh (University of Pennsylvania) presented results on the required dynamic
range of synapses and showed that with binary synapses storage capacity is only reduced
by a factor of two from real synapses. He presented a simple directed drift learning al-
gorithm for these binary synapses and concluded that low dynamic range optical synapses
may be adequate for many applications. This, however, did not alleviate the dynamic range
requirements of the neurons, nor did it address the issue of contrast ratio or noise.

5.2 Issues in training and generalization

Eric Baum (NEC Research Institute, Princeton, NJ) discussed the limitations inherent to
learning from examples and concluded that the huge number of interconnects available in op-
tical systems may require a huge number of training exemplars in order to achieve valid gen-
eralization. One suggestion to alleviate the unfavorable scaling properties of huge networks
was to grow or prune the networks to fit the task. He suggested that the superabundance of
resources in optics may allow fast learning, followed by pruning, to achieve a minimal optical
network quickly and obtain good generalization.

John Denker (AT&T Bell Laboratories, Holmdel NJ) discussed the difference between
capacity and generalization in a neural network, and illustrated the importance of massively
exceeding capacity to insure valid generalization. Since the type of real world pattern recog-
nition problems likely to be processed on an optical neural network are somehow structured
in a very high dimensional space and manifestly not random, the capacity arguments invoked
for randomly selected patterns should be applied cautiously.

6 Some Conclusions

The issues brought to light are challenging ones. In face of rapid developments in electronic
technologies, are optical neural networks truly viable? The discussions were lively, and
opinions were frankly expressed by the participants, although universal agreement was not
achieved.

6.1 Comparison with VLSI neural networks

A major topic of discussion was the viability of optical neural networks in light of the
incredible advances foreseen in the electronic implementation of neural networks. Larry
Jackel (AT&T Bell Labs, New Jersey) and Josh Allspector (Bellcore, New Jersey) illustrated
the great potential of the VLSI approach to neural networks with numerous examples of
fabricated chips. However, VLSI neural networks are limited to two dimensions while optics
can make use of the three-dimensional storage capacity of volume holograms which allows
the compact realization of huge networks with N310,000 neurons, well beyond the projected
capabilities of VLSI. The trainability of such networks and the search for problems that
inherently require these large networks are still open questions.
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6.2 Fault tolerance

Several researchers emphasized that the optical implementations of adaptive networks are
capable of learning out some of the imperfections inherent to optical systems. Because of this
these systems may stand a better chance for success than other optical computing paradigms
since they are inherently more fault tolerant and robust.

6.3 Biology and neural network theory

The importance of biological principles was emphasized by several researchers since the brain
provides an existence proof of the utility of the neural paradigm. There is, however, currently
a mismatch between theoretical models and optical implementation because many of the
models are derived directly from biological principles or intended for VLSI Implementation
rather than optical, and a closer coupling between optics and neural network theory was
suggested.

6.4 Applications of optical neural networks

Many discussions centered around applications appropriate for optical neural nets. Image
recognition, an inherently two-dimensional problem, seem to be a natural match for optics,
especially if the shift invariant properties of Fourier optical systems can be combined with
some recent neural models that require correlation. Problems such as Al data base searches
may also be able to take advantage of the huge storage capacity and dimensionality of optical
systems. Naturally dynamical problems such as speech and radar may find ideal matches in
nonlinear dynamical optical systems.

A final conclusion of the workshop was that optical neural networks need to be applied
to a large-scale application problem well beyond the capabilities of electronics in order to
demonstrate the viability of this nonconventional approach to computation.

7 Future Plans
The workshop was quite successful as a vehicle leading to important discussions, critical self
evaluation, and directing future research in the most advantageous and necessary directions.
A follow on workshop may be held in early 1992.
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Successful Demonstrations of Optical Learning

E. Paek, Bellcore
250,000 inputs, 10 outputs, dual rail bipolar
Perceptron learning in photorefractive using electronic feedback

Problems with erasure in photorefractives
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Fig. 3. Experimental learning curves for five training pat-
terns (A, B, C, D, and E).

K. Johnson, University of Colorado OCS
32 inputs, 32 outputs - single layer with electronic learning
17 inputs, 10 hidden, 3 outputs - electronic backprop
Learning weights as polarization rotating pixels on LC SLM
Learning successfully compensated for optical imperfections
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J. Hong, Rockwell Sciences
Image classification using a photorefractive perceptron
Coherent erasure by Stokes theorem
Photorefractive erasure leads to unlearning

F. Mok, Northrup
Multiple image storage in photorefractive LiNbO 3

500 images with no crosstalk

D. Brady, University of Illinois, Urbana
Optical learning in volume holograms, sampling grids
Scheduling for learning, read-write assymetry, loading
500 input, 500 output, learned 20 associations
Perceptron learning demonstrated
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Optical Synapse Technology

Photorefractive Crystals
Read-Write assymetry necessary for learning

Cr doped BaTiO 3 - difficult to erase gratings
Hole fixing in cooled BSO
500 holograms (320x240) angularly multiplexed in LiNbO 3:Fe

Thermal fixing, exposure scheduling, 25% uniformity
.020 separation, 300:1 beam ratio

Slow rotation to eliminate fanning noise in photorefractive amplifiers

Photorefractive fiber sensor for robot arm
Winner-take-all and sequential dynamics in photorefractive resonators

Fractal sampling grids allow global interconnections
Loading of N 3 holographic degrees of freedom requires scheduled training

only have 2N 2 control parameters

Holographic Associative Memories
Space Variant Interconnections with CGH very inefficient

NxN array of neurons requires 8N 2x8N 2 e-beam CGH
low precision interconnection strengths, use redundancy

N=64, N2=4096, hologram =(6.4crn) 2 with lpm pixels

Optical disks to store synaptic weights
CGHs can be written on Sony sampled format optical disk
Holographic ceconstruction writes weights onto VLSI neural network
Uses optically controlled synapses on an electrical neural net chip



Optical Neuron Technology

Sources (LEDs or LDs) vs Modulators
Silicon hybrid or GaAs monolithic

Goals
> 104 neurons per chip
response time lmsec -- lbpsec
optical gain > 10 --+ 106

power dissipation < 1mW/neuron

Technologies
Photodetectors and Amplifiers

Photodarlingtons, photodiode FETs, ...

Smart Spatial Light Modulators on Silicon VLSI
PLZT
ferroelectric liquid crystal

GaAs Source - Mutually incoherent

LEDs
Surface emitting vertical cavity Laser D;'-des
Surface emitting microresonator laser diodes - optically pumped

GaAs Modulator Arrays
SEEDs, Symmetric-SEED arrays, and Multi-Seeds
Heterojunction Bipolar SEEDs

Optically Addressed Spatial Light Modulators
H:oa-Si photodiodes - ferroelectric liquid crystal SLMs

Photorefractive 2-beam coupling
Resonator dynamics for winner-take-all



Implications of Neural Network Theory

Learning from examples
Need enough examples to learn a functional mapping

64W 64Nm >_ -- log -
f E

m=# examples required for confident generalization
W = # weights, N= # neurons, 1-2 correctly classified
Optics, huge number of interconnections,

therefore huge number of examples are required

How much dynamic range do synapses need?
Cover capacity = 2N, with binary weights capacity = N
Binary synapse learning with directed drift algorithm
Neurons require accuracy 1/N
Low dynamic range synapses may be good enough

Training restricted neural networks
Domain of learning must be constrained or learning is intractable
Curse of dimensionality

Higher order neural networks
Can be used for learning grammars and sequential processing
Scales very poorly in VLSI, N inputs per neuron, not 1 summed input
Optics can do quadratic elegantly

Scalability
Need to grow or prune networks to fit the task
Optics has a superabundance of resources

may allow fast learning then pruning



Some Conclusions

Optical vs Electronic neural networks
Incredible advances in electronic neural nets are foreseen.

Optics is shooting at a moving target.
Main advantage of optics is high connectivity

Ability to build huge networks, N>10,000
What problems inherently require such huge networks?

Can such huge networks be trained?
Require enormous number of training samples

3D interconnections using volume holograms
Unique to optics
The brain is 3D.
VLSI is limited to 2D.
Allows compact realizations of huge networks.

Optical implementation of adaptive nets
Capable of learning out some imperfections
Stand a better chance for success than other optical computing paradigms.

Mismatch between theoretical models and optics.
Develop new algorithms matched to optical hardware.

Importance of biological principles.
Existence proof of the utility of the neural paradigm
Holographic style processing has no direct electronic counterpart

Applications appropriate for optical neural networks.
Image Recognition, inherently 2D problem.

Take advantage of shift invariance.
Naturally dynamical problems such as speech

Nonlinear dynamics can be matched to optical physical dynamics.
Huge problems

AI data base search

Optics needs to solve a real problem
One that electronics can not do, in order to demonstrate its viability.
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ProgSSo tial nWorkshop considers opticalProgress on optical neural

networks...Calendar of events neural networks

What can optics do for neural networks? This was the question
m EDITORIAL BOARD addressed by 39 researchers who attended the Workshop on Optical

Dr. Ravindra A. Athale Neural Networks in Jackson, WY, Feb. 7-10, 1990. The workshop,BDM Corp. sponsored by the US Air Force Office of Scientific Research and the

McLean, VA 22102 Office of Naval Research, was organized by Lee Giles (NEC Research
Institute, Princeton, NJ), Demetri Psaltis (California Institute of Tech-

Dr. H. John Caulfield nology [CalTech], Pasadena, CA), and Kelvin Wagner (Optoelectronic
University of Alabama Computing Systems [OCS] Center, University of Colorado [CU] at
in Huntsville Boulder).
Huntsville, AL 35899 The purpose of the workshop was to critically examine the status of
D..KetJeinoptical neural-network research and evaluate its present and future
University of Southern roles, particularly as an implementation technology for neural-

California network models of computation. Participants indcluded researchers in
Los Angeles, CA 90007 optical neural networks . dl as ,_xperts in related fields such as

active optical devices, VLSI implementation of neural networks, and
Dr. Kristina Johnson neural-ne; .erk architectures, algorithms, and theory.
University of Colorado Neural networks typically consist of weighted global interconnec-,
Boulder, CO 80309 tion% between arrays of simple nonlinear units. Their output is usually a,

Dr. Sing H. Lee soft threshol. -ersion c' the weighted and summed inputs from other

University of California neurons. Learning dynamics are used to evolve the interconnection
at San Diego weight matrices as a succession of small perturbations, usually
La Jolla, CA 92093 implemented as sums of outer products. -These are the essential features,

that must be incorporated into any hardware implementation of a
Managing Editor: neural network.
Marilee Dunn Optical techniques are being considered for the implementation of

Coordinator with LF World: neural-network models of computation because of several unique
Alrtor wh eb Wproperties of optical systems. These include the three-dimensional (3-

D) topology of optical systems and the ability of optical beams to cross
through one another in free space, allowing the compact implementa-
tion of global interconnect networks. In addition, the continuous analog
nature of optical systems can be combined with nonlinear optical

s WHERE TO WRITE devices to implement nonlinear dynamical systems, which are a good

Readers are invited to submit match to neurodynamical models of computation and learning.

news items or short articles Optical approaches to the implementation of neural networks are
on any aspect of optical usually based on one of two distinct techniques for implementing the
computing and to suggest weighted interconnections required by the neural models. The first
topics to cover in future approach, shown in Fig. 1, uses the variable transmittance of a pixel in a
issues. Send queries to: two-dimensional (2-D) spatial light modulator (SLM) to represent the
Marilee Dunn weight of an interconnection. The second approach uses the program-

aleDn Computimable diffraction efficiency of a holographic grating to represent the ..

Optoelectronic Computing weight of an interconnection. Both techniques rely on spatial broadcast-Systems Center

Campus Box 525 ing and spatial collection of the weighted outputs to complete the . .. ,
University of Colorado required matrix vector multiplication. -

Boulder, CO 80309 A potential advantage of the holographic technique, which was
TEL: (303) 492-7967 emphasized by several conference participants, is the ability to utilize .

FAX: (303) 492-3674 volume holograms to store the interconnection gratixgs in three " ,.
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dimensions, as shown in Fig. 2. This allows a system that uses a photorefractive crystal to provide
tremendous density of weighted interconnections to the adaptive weighting. The system had 250,000
be realized, and the use of dynamic materials (such input neurons and 10 bipolar outputs. His research
as photorefractive crystals or organic holograms) demonstrated that a multiple-output perceptron
allows the implementation of real-time learning in could be implemented by multiplexing gratings in a
the optical domain. This is based on an extension of volume medium without unwanted crosstalk. Both
the holographic metaphor for associative memory Paek's and Hong's systems exhibited anomalous
proposed by Van Heerden and Gabor more than 20 unlearning due to incoherent erasure in the crystals
years ago. Two key developments that distinguish after the desired pattern associations had been
modern optical neural-network research from earlier learned and were simply being read out.
pioneering work on holographic association are the Successful learning was also obtained in systems
incorporation of dynamic learning algorithms and employing SLMs as the adaptive interconnections.
the central role played by the neural nonlinearity. Kristina Johnson (OCS Center, CU-Boulder) pre-

sented results of single-layer and multilayer learning
Learning systems experiments in a polarization-based liquid-crystal
The most distinctive feature of neural-network optical connectionist machine (see Fig. 3.). The
models of computation is the ability to learn from optical connectionist machine has performed associ-
experience. This is accomplished by adaptively ations between 32 input and output neurons trained
modifying the strength of the interconnections be-
tween the neurons. In optical systems, these Sequentially Fractal

recorded sampling
Bipolar association mask

interconnection detector Saturating
mask . oe~e 'or Saturatnmas', pai..rs amplifiers Recording the

ousc pifer holographic
Source Vi #'II I associations

Sampled
Volume associated

Partial holorm ott

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _input

Feedback
FIGURE 1. Controllable pixel transmittance allows optical light
modulator to work in an optical neural network. FIGURE 2. Holographic approach to optical neural networks

takes advantage of volume holograms.
weights are usually represented as the diffraction

efficiency of holographic gratings or as the transmit- on 200 patterns of sunspot data to predict solar flare
tance of pixels in a SLM. Neural learning algorithms activity. The learning dynamics successfully compen-
give rules for the adaptive modification of these sated for several varieties of noise due to imperfec-
interconnections or weights, which are almost al- tions in the optics.
ways based on iterative outer product perturbations Nabil Farhat (University of Pennsylvania, Philadel-
of the weight matrix. This can be mapped into optics phia, PA) presented work on Boltzmann machine
as either associative holographic recording or as the learning using binary SLMs. He showed how a
product of crossed one-dimensional light modulators multilayered network can be implemeqted in a single
addressing a 2-D optically addressed SLM. layer of hardware by partitioning the weight matrix

Several successful optical learning demonstra- into a number of blocks representing the interconnec-
tioris using photorefractive crystals were presented at tions between different layers. He also discussed
this workshop. John Hong (Rockwell Science Cen- phase-space engineering, which describes his ap-
ter, Thousand Oaks, CA) demonstrated the success- proach to designing an optical neural network. This
ful operation of a photoreceptive perceptron. His entails the design of the path of a complex system
system uses coherent erasure to decrease the adap- through its state space and represents a computation
tive weights, where a 7r phase-shifted grating is as the state space evolution of the system.
written on top of an existing grating, thereby
partially canceling the grating. Eung Gi Paek (Bell- Optical-synapse technology
core, Livingston, NJ) presented a perception learning The successful realization of optical neural net-
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works is dependent upon the availability of compo- tion requirements of a space-variant interconnec-
nents that can act as neurons and synapses. The tion hologram for an N x N-neuron array grow as
optical synapses must weight the interconnections KN2 x KN2 , where K is an oversampling factor,
between the neurons. The ability to dynamically typically greater than 10. In addition, the accuracy of
modify these synapses is required to implement these weighted interconnects might be too low for
adaptive-learning algorithms, some applications (such as neural optimizers), but it

Holographic interconnections using dynamic vol- might be sufficient for optical associative memory.
ume holograms were discussed by several partici- Alan Yamamura (CalTech) presented new results
pants. A major difficulty with these materials is the of writing computer-generated holograms on Sony's
incoherent erasure that occurs while the holograms sampled-format optical disks. Holographically re-
are being read out, which results in the unlearning constructed weight matrices were written onto opti-
phenomena observed by Paek and Hong. This cally programmed VLSI neural chips to control the
incoherent erasure problem in photorefractives can electronic interconnect topology from the optical
be alleviated by inducing a read-write asymmetry. domain. This allows rapid reprogrammability of the

Henri Rajenbach (Thomson-CSF, Boulogne-Bil- interconnections to implement multilayer networks.
lancourt, France) presented preliminary results of
hole fixing in cooled BSO (BUSiO20), which resulted Optical neuron technology
in the ability to continuously read out images for Optical neurons need to sum a huge number of
several hours without erasure. This is possible weighted inputs and produce a threshold output.
because a photogenerated hologram written by the The goals, stated in an. introduction by Demetri

i.electrons is compensated by the holes, and at low
temperatures the hole mobility is much lower than
the electron mobility, so that a hologram written as
spatial modulations of the hole density remains
f frozen into the crystal.

. Fai Mok (Northrup Corp. Research and Technol-
ogy Center, Palos Verdes, CA) presented results of
multiple-image storage in LiNbO3:Fe, which used
thermal fixing and exposure scheduling to compen-
sate for erasure during writing and also eliminated
erasure during readout. He has successfully stored
and retrieved more than 500 images of more than
60,000 pixels each, with greater than 0.01% diffrac-
tion efficiency.

Dana Anderson (OCS Center, CU-Boulder)
showd wnne-tae-al bhavor n squetia reallUNIVERSMT OF COLOADO

showed winner-take-all behavior in sequential recall FIGURE 3. Polarization-based optical connectionist machine
dynamics in multicrystal photorefractive resona- has learned from sunspot pattern.
tors. The computation dynamics inherent to the
photorefractive circuits can be applied as a very Psaltis, are to produce devices with more than 10,000
general technique for obtaining almost any dynam- neurons with a response time in the microsecond
ics, provided one has a sufficient number of modes range, gain greater than 10, and power dissipation
and sufficient control over the mode interactions. below a milliwatt. Although such a device capabili-
Furthermore, this class of optical system is one of ty is not yet available, several technologies appear to
the few kinds of physical systems that can embed be approaching this goal.
continuous distributions of neural activity process- Ferroelectric liquid crystals are promising candi-
ing in continuous time. dates for implementing large arrays of low-power

Art Gmitro (University of Arizona, Tucson, AZ) neurons. Garret Moddel (OCS Center, CU-Boulder)
and H. J. White (British Aerospace, Bristol, UK) illustrated the capabilities of an amorphous-silicon
presented analysis of the limitations of space- ferroelectric-liquid-crystal (FLC) optically addressed
variant-weighted interconnections using e-beam SLM (OASLM) using smectic C* and smectic A*
written computer-generated holograms for inter- materials. The smectic A* device achieves as low as
connecting 3-D neuron arrays on liquid-crystal light a 4-pLs response time for a 1000 x 1000 array
valves. They both concluded that up to about 64 x requiring 0.1-pJ/pixel switching energy. These capa-
64-neuron arrays could be globally interconnected to bilities make this an almost-ideal device for imple-
implement a nonadaptive optical neural network menting optical neurons. Further improvements
using this technique. However, larger networks can be made by including a third terminal, which his
woud be beyond the technological capabilities of group recently demonstrated, thereby implement-
this technology. This is because the size and resolu- ing a -variable threshold device.
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Tim Drabik (Georgia Institute of Technology, during the workshop. Two specific consequences are
Atlanta, GA) presented recent results on a silicon mentioned here.
VLSI chip coated with an FLC, which incorporated Santosh Venkatesh (University of Pennsylvania)
photodetectors and acted as an OASLM. This device presented results on the required dynamic range of
may have applications as an optical neuron array or synapses and showed that, with binary synapses,
as an early vision optical preprocessor. storage capacity is only reduced by a factor of two

Another promising approach is to use optoelec- from real synapses. He presented a simple directed-
tronic GaAs modulators and sources such as LEDs drift learning algorithm for these binary synapses
and diode lasers driven by electronic photodetec- and concluded that low-dynamic-range optical syn-
tors. Several variants were proposed for optical apses may be adequate for many applications. This,
neurons, and their properties were compared and however, did not alleviate the dynamic-range re-
contrasted. Tony Lentine (AT&T Bell Labs, Naper- quirements of the neurons, nor did it address the
ville, IL) showed results of a 1.5-pJ switching- issue of contrast ratio or noise.
energy symmetric self-electro-optic-effect device. Ar- Eric Baum (NEC Research Institute) discussed the
rays of those devices can implement loser-take-all limitations inherent to learning from examples and
dynamics by electrically interconnecting them in concluded that the huge number of interconnects
series. Although this is the opposite of the winner- available in optical systems may require a huge
take-all dynamics required in many neural models, it number of training exemplars to achieve valid
can be modified by following with a separate optical generalization. One suggestion to alleviate the unfa-
inversion stage. vorable scaling properties of large networks was to

Demetri Psaltis showed results of a 10 x 10 array expand or prune the networks to fit the task. He
of phototransistor Darlington-amplifier LED neurons suggested that the superabundance of resources in
fabricated in GaAs. LEDs were chosen instead of optics may allow fast learning, followed by pruning,
more-efficient diode lasers because they have no to achieve a minimal optical network quickly and
current threshold, and the power dissipation of a obtain good generalization.
very large array of optical neurons can be minimized. Kelvin Wagner

University of Colorado at Boulder
Implications of neural-network theory Lee Giles
Neural-network theory has several implications for NEC Research Institute
the requirements and limitations of optical neural Demetri Psaltis
networks. These issues were discussed at length California Institute of Technology
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